skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mendes, Juliana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Organometal halide perovskite light emitting diodes (LEDs) have attracted a lot of attention in recent years, owing to the rapid progress in device efficiency. However, their short operational lifetime severely impedes the practical uses of these devices. The operating stability of perovskite LEDs are due to degradation due to ambient environment and degradation during operation. The former can be suppressed by encapsulation while the latter one is the intrinsic degradation due to the electrochemical stability of the perovskite materials. In addition, perovskites also suffer from ion migration which is a major degradation mechanism in perovskite LEDs. In this review, we specifically focus on the operational stability of perovskite LEDs. The review is divided into two parts: the first part contains a summary of various degradation mechanisms and some insight on the degradation behavior and the second part is the strategies how to improve the operational stability, especially the strategies to suppress ion migration. Based on the current advances in the literature, we finally present our perspectives to improve the device stability. 
    more » « less
  2. Abstract Quasi‐2D Ruddlesden–Popper halide perovskites with a large exciton binding energy, self‐assembled quantum wells, and high quantum yield draw attention for optoelectronic device applications. Thin films of these quasi‐2D perovskites consist of a mixture of domains having different dimensionality, allowing energy funneling from lower‐dimensional nanosheets (high‐bandgap domains) to 3D nanocrystals (low‐bandgap domains). High‐quality quasi‐2D perovskite (PEA)2(FA)3Pb4Br13films are fabricated by solution engineering. Grazing‐incidence wide‐angle X‐ray scattering measurements are conducted to study the crystal orientation, and transient absorption spectroscopy measurements are conducted to study the charge‐carrier dynamics. These data show that highly oriented 2D crystal films have a faster energy transfer from the high‐bandgap domains to the low‐bandgap domains (<0.5 ps) compared to the randomly oriented films. High‐performance light‐emitting diodes can be realized with these highly oriented 2D films. Finally, amplified spontaneous emission with a low threshold 4.16 µJ cm−2is achieved and distributed feedback lasers are also demonstrated. These results show that it is important to control the morphology of the quasi‐2D films to achieve efficient energy transfer, which is a critical requirement for light‐emitting devices. 
    more » « less